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Cyber-Physical Power System
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M. Abdelmalak, V. Venkataramanan and R. Macwan, "A survey of cyber-physical power system modeling methods for future energy systems," IEEE Access, vol. 10, 2022.
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Cyber-Physical Microgrid
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Cyber-Physical Security in the Power System

* As acyber-physical system, the power grid is vulnerable to attacks on its structure. Attacks
are malicious acts that exploit security vulnerabilities to disrupt power grid operation.

* Most attacks originate in the cyber system since it is more exposed and has more
vulnerabilities. Physical attacks can also happen.

* Itisimperative that the power grid is protected from cyberattacks to ensure its security and
stability are maintained.

Year Affected System Type

2001 California 1ISO Compromising web servers under de-
velopment

2007 Estonia’s critical infrastructure  Distributed denial of service (DDoS)

2011- Several U.S. utilities Exploiting human-machine interface
(HMI) by BlackEnergy

2012 Unnamed U.S. Northeast utility = Possibly network scanning and bot-
nets by UglyGorilla

2013~ Several U.S. utilities, vendors Malware infection (trojan) by Havex

2013 PG&E in Coyote, CA Telecom cables cut; snipers firing on

17 transformers at a substation (phys-
ical attack on the cyber-physical sys-

tem)
2014 Unnamed U.S. utility Remote access due to weak password
2015-16  Ukrainian power system Malware installation, HMI hijacking,

and DDoS to customer service

Data from various sources, including DOE’s Electric Disturbance Events Annual Summaries at
https://www.oe.netl.doe.gov/OE417_annual_summary.aspx. There were 75 sabotage/vandalism
reports in 2022.
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Cyber-Physical Vulnerabilities in the Power System

* A power system has vulnerabilities that combine vulnerabilities of the
and :

* The increasing number of vulnerabilities stem from different trends:

Wireless communication is gaining popularity for
integrating scattered devices. Also, combining wired
and wireless communication makes it difficult to
design a robust and uniform policy for cybersecurity.

Aside from the disparate proprietary protocols, many
devices and IBRs are starting to use open protocols
such as IEC61850 and DNP3. These protocols have

inherent vulnerabilities.

Increased communication via the internet can create
extra vulnerabilities that can be exploited from the
outside world.

Increasing internal pervasive communication results in
several malicious attacks and unintentional
errors.

Domain Common Vulnerability
Poor Code Quality
Inadequate Configuration Management
o Poor Permissions and Access Management
Application
Inadequate Patch Management
Software

Inadequate Data Integrity Checking

Inadequate Error Handling

Inadequate Database Protection

Communication

Inadequate Segregation and Segmentation

Inadequate Access Control

Weak Intrusion Detection and Prevention

Weak Encryption Mechanism

Network — .
erwor Inadequate Sensitive Data Protection
Inadequate Network Monitoring and Auditing
Inadequate Anomaly Tracking
Unprotected Physical Access
- Improper Device Configuration
Field - .
. Inadequate Firmware Protection
Devices

Lack of Tamper-resistance Hardware

Weak Authentication and Authorization

Z. Li, M. Shahidehpour and F. Aminifar, "Cybersecurity in Distributed Power Systems,"

Proceedings of the IEEE, vol. 105, no. 7, pp. 1367-1388, Jul. 2017.
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Power System Communication Standards/Protocols

 Communication systems are typically designed to
cover a subsystem (generation, transmission, and
distribution) ather than the whole system.

* Communication exists in levels such as data sharing
among the devices in a distribution substation to
share data between the distribution system and the
central controller. Typical devices for power system
communication are smart meters, remote terminal
units (RTU), and protective relays.

« Communication standards and protocols are
primarily designed to enable interoperability among
different devices from various vendors.

* The most common open protocols for power system
communication are Modbus, DNP3, |[EC 61850, OPC
UA, TASE.2, IEC 60870-5-101, and IEC 60870-5-104.
Power system entities may also use enterprise
protocols and/or proprietary protocols.
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Control
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IEC 60870-5
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S. Mohagheghi, J. Stoupis and Z. Wang, "Communication protocols and networks for power
systems-current status and future trends," IEEE/PES Power Systems Conference and
Exposition, 2009, pp. 1-9.
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Modbus Modbus-F2009 Modbus-S2015 Modbus-A2018 OPC UA TASE.2
L. . .. Challenge- Password-based,

Authentication X Signature Signature Tesponse X509, WSS X
Authorization X X X X X X
Integrity X SHA-2 SHA-2 Checksum Signature X
Confidentiality X X Encryption Encryption Encryption X

DNP3 DNPSec DNP3 SA IEC 61850
Authentication X HMAC Challenge- X

response

Authorization X X X X
Integrity X SHA-1 SHA-2 Checksum
Confidentiality X Encryption X X

A. Volkova, M. Niedermeier, R. Basmadjian and H. de Meer, "Security Challenges in Control Network Protocols: A Survey," IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 619-639, Firstquarter 2019.

Summary of Open Protocol Security Specifications
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Toward a Decentralized, “Lots of X” Power System

* The power grid is becoming more decentralized:
- More renewables are being integrated in the power grid: fewer synchronous generators and more IBRs.
- Lack of inertia makes the grid more sensitive to disturbances.
- Fast and reliable communication systems are necessary for stable operation and control of the grid.

 The increased amount of communication as well as more IBRs means that the cyber-physical
attack surface of the grid is increasing.
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B. Kroposki, B. Johnson;,Y. Zhang, et al., “Achieving a 100% renewable grid,” Power & Energy M., 2017.
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D. Muyizere, L. K. Letting, and B. B. Munyazikwiye, “Effects of communication signal delay on the power grid: A review,”
Energies, vol. 11, no. 6, Mar. 2022.
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Sensor Attacks on CHB-Based IBRs
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A. Teymouri and A. Mehrizi-Sani, “Sensor malfunction and mitigation strategy for a multilevel photovoltaic converter,” IEEE Trans. Energy Convers., vol. 35, no. 2, Jun. 2022.
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GPS Spoofing Attacks on Power Sharing for IBRs
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Cyber Vulnerability and Security in HYDC
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VT Power Grid Testbed for Cybersecurity Design

The power grid testbed at VT provides various capabilities to design high-performance and
cybersecure control systems for inverter-based power systems.

This testbed consists of a real-time simulation setup using RTDS units offering communication
via protocols such as Modbus, DNP3, and IEC 61850, which is connected to a microgrid testbed

consisting of devices such as inverters via four-quadrant amplifier as well as a 5G testbed in
Arlington, VA.

Cyber risk assessment using the VT power grid testbed allows for the design of secure

communication protocols to and cybersecure controllers to minimize the risk and maximize the
performance of the power system.

Blacksburg, VA
(6th floor) Signal

Arlington, VA

Power S \ 25kW |nverters
Emulator A

56 Raspberry Pi 4 Measrements V
Testbe LD W
d/

8

5G ~
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5G Communication in the VT Power Grid Testbed:

5G NSA
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* The 5G testbed at the Commonwealth Cyber Initiative 2 | id1-CSPAACE]
(CCI) is used to provide 5G non-standalone (NSA) £ 0.20 4/\ B -
connectivity to RTDS. §
* The 5G user equipment (UE) is a Samsung Galaxy S20 010 T e - 700 350
phone, while the testbed base station is emulated Time (ms)
using Amari Callbox technology.
« ATCP/IP interface is designed using socket 039 ~id2-SPAACE

programming to connect the UE to RTDS and establish
duplex communication.

Af‘/w —id2-CSPAACE
* Aclient program is designed for the UE in JAVA while a . . . . .

server program is designed for RTDS in Python. ° 1 P himes) 7 99-5
e The minimum roundtrip latency is 28 ms.
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5G Communication in the VT Power Grid Testbed

An in-house 5G testbed is under
development by Wireless@VT, which can
be used for direct connection between
devices in the VT Power Grid testbed.

This 5G testbed provides more
functionalities than the CCI testbed as
well as a lower latency and more
flexibility toward more research in
improving communication for power
systems.

RTDS Four-Quadrant
Simulator Amplifier

Base Station
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ongoing Research: Signal Reconstruction for Control

 |Indistributed control, IBRs
communicate signals to improve
system performance.

* The communicated signals
typically have a similar shape
during microgrid disturbances.

 5G-based distributed control
can become victim to noisy
Operati ng Cond itions’ Wh I Ch Ca n MWN\’I‘\MHI%!II‘MHIWWN WIF'IWMMMM‘ NMIM’IN!H‘W ALl

b e CcaAus ed by e nVi ronmenta | ;MmmmwwmMu‘uMim‘mmmmuimmwuwnw|wn|m1wm.|wuuwlmu
conditions or cyber attacks. |

* These disturbed signals can be
properly reconstructed to
correct signals by using
autocorrelation and cross-
correlation-based ‘g‘
measurements.
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ongoing Research: Signal Reconstruction for Control

Li-1

Algorithm 1: SDP-based Reconstruction Algorithm. , .
i = a[m] = Z xq1[n|xl[n —m]
Inputs: The autocorrelation and cross-correlation —
measurements by, for 0 < m < M, the signal lengths L;
and L.
Outputs: Signal estimates X; and Xo. A L
° Obta'm the (L; + Lo) X (L1 + Lo) matrix X by asfm] = Z wa[nletfn — m]
solving n=0
find X,
subject to trace(A;;, X) = by, for 0 < m < M, L
-
X = 0. (7) aja[m] = Z xq1[n|ei[n —m)]
. n=0
e Calculate the best rank-one approximation of X
through SVD, and get xx*.
e Return x; = (z[0], z[1],...,: t[L1 —1])T and e .
%5 = (#La], #[Ly +1],....#[Ly + Ly —1))T. anifm] = > wzlnleifn —m]
n=0

* In our work, semidefinite programming (SDP) is used to
reconstruct noisy signals using their autocorrelation
and cross-correlation measurements with locally
measured signals and/or with each other.

* Autocorrelation and cross-correlation may become
susceptible to noise when sample batches are small and
noise is powerful but SDP can be designed to be
resilient toward noise.
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Noise reduction in remote signal
der_1_noisy using its autocorrelation
and cross-correlation with local signal
der_2 via SDP reconstruction.
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